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Abstract. In order to characterise the interplay between quasiperiodicity and order in  one 
dimension, we consider sequences of 0 and 1 generated by a circle map. These sequences, 
which generalise the Fibonacci sequence, describe the quasiperiodic ordering of atoms and 
vacancies on a line. We study in a quantitative way the unbounded fluctuation of the 
atomic positions WRT the average lattice. For some quadratic algebraic values of the 
rotation number, the sequences can be generated by inflation rules, which proves their 
self-similarity. These rules, obtained by a renormalisation of the circle map generating the 
sequences, permit us, e.g., to explain the logarithmic divergence of the fluctuation. For 
some exceptional rotation numbers, the fluctuation diverges as N o ,  N being the system 
size. Whenever a > 4 ,  the quasiperiodic chain is therefore less 'rigid' than a random one. 

1. Introduction 

The discovery of quasicrystals has stressed the importance of quasiperiodic structures 
in condensed matter physics, already met in incommensurate materials [ l] .  It is thus 
of interest to analyse in detail the relevance of quasiperiodicity to structural models, 
and  in particular to understand the links between types of order and quasiperiodicity. 
This paper, following previous works [2,3], is concerned with the study of this question 
in one dimension. 

Let us illustrate our purpose in a more precise way. Take a periodic linear chain 
with lattice spacing 1. A lattice site may or may not be occupied by an atom. In the 
latter case, it is called a vacancy. Thus, for a finite system of size NI, the numbers of 
atoms N ,  and of vacancies N ,  are related by N ,  + N,, = N. We assume that the mean 
density of atoms defined by 

p =  lim N,/Nl  
N + r  

exists. For any finite size NI of the system, the number of atoms N ,  fluctuates around 
its mean value: 

N , = p N l + S ( N ) .  (1.2) 

When the distribution of atoms is periodic, the fluctuation S ( N )  is periodic as well, 
and  hence remains bounded when increasing N. If, on the other hand, this distribution 

11 Present address: Thomson-CSF, LCR, 91401 Orsay, France. 
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is random (e.g. in a fluid), the fluctuation S ( N )  increases typically as J N .  A third 
case of interest is when the distribution of atoms is quasiperiodic. We will show below 
that the fluctuation S( N )  may exhibit various kinds of behaviour: it may be bounded 
as in the periodic case, or diverge with N (usually as In N, but possibly even more 
rapidly than in a random system). 

In previous works [ 2 , 3 ] ,  a simple structural model was studied, which shows such 
a behaviour of S (  N ) .  More precisely, in the ground state the fluctuation ofthe positions 
of atoms around their average lattice diverges, though the Fourier spectrum of the 
density is discrete. In physical terms, this means that the structure is quasiperiodic, 
but has no average lattice. The aim of this paper is to study in a more quantitative 
way these unbounded density fluctuations in a particular case of the model mentioned 
above. 

Inasmuch as the present work is a continuation of other ones [2,3], 5 2 is devoted 
to a short summary of the results obtained previously. In § 3 we analyse in detail a 
specific example, for which it is possible to deduce the logarithmic divergence of the 
fluctuation from inflation rules obtained from an exact renormalisation procedure. In 
§ 4, we present the general theory. Section 5 contains a short discussion. 

1 21 
1 
I 

r ,  - - - - -"\/wlir ; '  I 1  

1 A 

* 

2. A short summary of previous work 

The model considered in [ 2 ]  consists of a chain of atoms such that the distance between 
two consecutive atoms is constrained to be 1 or 21, l  being a given number. Moreover, 
this chain is subjected to a periodic potential with period 1, taken to be sinusoidal for 
simplicity (figure 1). We denote by uj the abscissa of the j th  atom, starting from the 
origin ( uo = 0). For a fixed fraction c of long bonds of length 21, the ground state of 
the model is obtained by minimising the potential energy of the chain: 

with the constraints 

U,+, - U, = 1 or 21. ( 2 . 2 )  
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Whenever I is an irrational number, this model presents incommensurability effects 
between the period of the potential and the bond lengths. 

There is an equivalence between the sequence {U,} describing the ground state and 
the sequence obtained by the circle map T defined as follows. The position of the ith 
site, occupied by an atom or a vacancy, starting from the origin, is U, = il. We consider 
the interval W = IO, A[, called the ‘window’, where A is simply related to the concentra- 
tion of vacancies c: A =  c / ( c+  1). Then the sequence {U,} of atomic positions in the 
ground state has been shown to be obtained as follows: withdraw from the sequence 
{ur}  the terms which belong to W (mod 1). This choice corresponds to the fact that it 
costs energy for an atom to sit near the top of the periodic potential, hence it is 
energetically favourable to have a vacancy instead. In other words, the ith site is 
occupied by a vacancy if and only if frac( il) < A. Here, and in the following, int(x) 
and frac(x) =x- in t (x)  denote the integer and the fractional part of x, respectively. 
Considering the interval W as an arc of the circle parametrised by O s  x s 1, the 
mapping U ’  = T (  U )  of the circle onto itself which generates the sequence {U,} by iteration 
is defined as a piecewise uniform rotation by the following equations: 

T ( u )  = u ’ =  U +  I 

T (  U )  = U‘ = U + 21 

when u + l  does not belong to W 

when U + I belongs to W. 
(2.3) 

In this model, no consecutive vacancies exist, which implies A < I < 1 - A .  This restric- 
tion on the number of consecutive vacancies may be released, i.e. it is possible to 
consider the same model for arbitrary values of 1 and A(0 < I ,  A < 1). The transformation 
T may also be written 

(2.4) 
where xA(x)  is the characteristic function of W, equal to 1 when x belongs to W, and 
to 0 when it does not: 

U ’ =  T (  U )  = U + (1 + X A ( U  + I ) ) /  

xs(x) = int(x) -int(x-A). (2.5) 
A theorem in number theory due to Kesten [4] gives some information on the fluctuation 
S ( N )  obtained from the map T. The number of vacancies from the origin until the 
Nth  site is equal to E,=,,, xa(v,), and hence the position u,of the nth atom is U, = NI, 
where N satisfies the condition 

Since the sequence {u,(mod 1)) is uniformly distributed on the circle, the mean value 
of the characteristic function is 

(2.7) 

and hence the density defined in (1.1) is p = (1 - A ) / / .  The theorem mentioned above 
asserts that the fluctuation 

of the number of vacancies with respect to its mean value NA is bounded in N if and 
only if the width A of W is a multiple (mod 1) of the rotation angle I ,  i.e. A =  r l + s  
for some integers r and s. If A does not satisfy this condition, S ( N )  is expected to 
diverge logarithmically with N for typical values of I, in analogy with results known 
in the part of number theory called discrepancy theory [5]. 
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Though the ground state of the present model is described by an incommensurate 
modulation of the vacancy density, it is very different from the standard ‘displacive’ 
incommensurate structures, where the ‘modulation’ of the atomic positions WRT their 
average lattice is given by 

u , = u o + n a + g ( q n )  ( 2 . 9 )  
where a = p-l  = (U,+] - U,) is the interatomic mean distance, which determines the 
average lattice U,+ nu, g ( x )  is a one-periodic function and q is the wavevector of this 
modulation. In these standard incommensurate structures, the function g ( x )  is 
bounded and square summable. It may be very smooth (analytic) or as irregular as a 
Cantor function. In the present model a = 1 / ( 1  - A ) ,  and the difference NI - na = 
a S ( N )  formally plays the role of g ( q n ) ,  where S ( N )  is the fluctuation considered 
above. When A # rl (mod l ) ,  S ( N ) ,  and hence the displacements of the atoms WRT 

their average position, are not bounded. The Fourier spectrum of the atomic density 
is nevertheless discrete. Indeed, this density 

p ( r ) = C  a ( r - u j ) = C  S ( r - u z ) [ 1 - ~ A ( u r ) I  
J I 

= [ I  - , y A ( r ) ]  6 ( r  - i l )  (2 .10)  

is the product of two periodic generalised functions with incommensurate periods 1 
and 1, respectively. Consequently, p (  r )  is a quasiperiodic distribution. More precisely, 
its Fourier transform is 

G ( q ) =  e19‘p(r)dr= C C m ( A ) 6 ( ( q 1 / 2 . n ) - m l - n )  I m, n 

with 

Cm(A) = [exp(-2.nimA) - 1 ] / ( 2 a i m )  for m # 0 

C o ( A ) = l - A = l p .  (2 .11)  
To conclude this section, let us note that the central mathematical object of this study 
is the sequence { , y s ( u , ) } .  From the knowledge of this sequence, one may construct 
different models. 

(i) The above-mentioned model, which is a distribution of atoms and vacancies 
on a linear lattice. 

(ii) A different model, which is defined as a distribution of links I (  i )  = U,,, - U,, 
given by the rule: 

I (  i )  = I ,  

I (  i )  = l2 

if vi  E! W 

if vi E W 
(2.12)  

where U, = il, and I , ,  I ,  are two arbitrary lengths. Equivalently, 

l ( i )  = h ( 1  - x A ( u l ) ) + k s ( u l )  (2.13) 
where ,yA is the characteristic function of W. Then the abscissae of the atoms are 
U, = X , = l , n  I ( i ) .  This model is far more difficult to study than model (i). Nevertheless, 
when A is equal to I ,  it leads [2] to the tiling of the standard projection method [ 6 ]  
in one dimension. In this case the fluctuation is bounded [2,4]. 

Hereafter, we will only focus our attention on the sequence { ,ys( i l ) } ,  and on the 
related fluctuation S ( N )  defined in equation (2 .8) ,  ignoring the condition A < I < 1 - A  
which was introduced in [2]. 
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3. Study of a specific example 

3.1. Preliminaries 

In the following, we will study the sequence { ,yA( i l ) } ,  restricting ourselves, for technical 
reasons, to the more symmetric case where the window covers half the circle ( A  = 4). 
In this section, we make the choice of a particular rotation angle 1 = 2 - T = T - ~ ,  where 
T = (A+ 1)/2 is the golden mean. In § 4, we show how the inflation rules derived in 
§ 3 can be generalised to arbitrary values of the rotation angle and we give some 
consequences on the growth of the density fluctuation. For the sake of convenience, 
since A = f we introduce the sequence 

E ,  = 2,ylI2( U) - 1 

.si = sgn(sin(2~i l ) ) .  (3.2) 

(3 .1 )  

which, in this particular case, has the alternative expression 

Thus 
fluctuation S ( N )  is 

= l(resp -1) if frac(i1) < f  (resp frac(i1) > f ) .  The mean value of E ,  is 0 and the 

S (  N )  =is( N )  with S ( N ) =  E j .  
i = I . N  

(3.3) 

In order to characterise the growth of S (  N ) ,  let us introduce its upper and lower 'hulls': 

S ( N ) m a x  = maxl,,,,S(n) S (  NIm,, = min I s n s  , S ( n  1. (3.4) 

These quantities have simple kinds of asymptotic behaviour, as will be shown below. 

3.2. Numerical observations 

Before giving an analytical derivation of the scaling behaviour of S (  N ) ,  we first present, 
for pedagogical reasons, some numerical results concerning the example above. Table 
1 gives the values of N, denoted N,, and N-, , ,  for which S ( N )  takes for the first 

Table 1. Values of N for which S( N) , , ,  is increased or S( N ) , , ,  is decreased. 

- 0 0 
1 1 1 = F2 

22 2 21 = F8 
399 3 311 = F,,  

7 164 4 6 165 = F,, 
128 551 5 121 393 = FZ6 

0 0 - 
5 - I  5 = F5 

94 -2 89=  F , ,  
1691 -3  1 597 = F,, 

30348 -4  28 651 = F,, 
544511 -5 514 229 = F29 
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time its maxima or minima: S (  N), , ,  = 1 , 2 , .  . . , n, . . . , or S( N )  = S ( N ) , , ,  = 
-1 ,  - 2 , .  . . , - n , .  . . . . Defining the Fibonacci numbers by 

Fo = 0, F ,  = 1 (3.5) F,, = F,-I + Fn-* 

we note that, for all values of n, the difference N ,  - N,,-]  is equal to F 6 n - 4 .  Similarly, 
the difference N - ,  - N- , ,+ ,  is equal to F6,, - , .  Figure 2 shows a plot of S ( N ) , , ,  and 
S ( N ) , , ,  against In N. Since, for large p ,  Fp behaves as @/J5, these quantities have 
the following simple behaviour: 

(3 .6 )  

These data exhibit some periodic structure around the average slopes *1/6 In T,  shown 
in figure 2 by broken lines. We shall now describe those results analytically. 

S ( N ) , , ,  f -S( N ) , , ,  f In N / 6  In T. 

3.3. Renormalisation and injution rules 

The sequence i l  (mod 1) may be generated by a rotation on the circle parametrised by 
0 < x < 1,  with the rotation angle 1 = 2 - T. Let us recall that when frac( U )  < i, E ,  takes 
the value + 1 ,  and when frac(il)>i,  E ,  takes the value -1 .  One may associate the 
symbols (+) or (-) to those two regions. The rotation generates an infinite sequence 
S of symbols (+) or (-). 

In this section, we will show that this sequence is self-similar. More precisely, S 
can be generated by a substitution, giving inflation rules, hereafter denoted by 9, 
acting on four types of ‘letters’: a, b, c, d. These letters are symbols for the spaces 
between any two successive E, in the sequence S, according to the following correspon- 
dence: 

(3.7) --- + + = a  + - = b  - + = c  - d. 

6 c 
2 
Y 

I I I 1 I I N- 5 
-6 

4 8 I In N 
12 

Figure 2. Plot of S( N) , , ,  and S ( N ) , , ,  against In N for the case A = f, I = 2 - 7. The 
values of N for which these quantities vary are listed in table 1 .  The broken lines show 
the linear law (3.6). 
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These inflation rules are 

a + c b c b d  

b + c b c  

c + a b c b d  

d - a b c b c  

(3.8) 

or, in terms of the 
the E ~ ) ,  

(remembering that the substitution acts on the spaces between 

+ + + - * * -  
+ -+- *+  

(3.9) -+++** -  
- -++* *+  

where the star stands for the symbol (+-). To be complete, a last rule should be 
added concerning the origin. Since the initial point uo = 0 stands at the right border 
between (+) and (-) on the circle, E,, is not defined. The beginning of the sequence, 
hereafter denoted (O+) (for 1 <+), is understood as being the limit between (++) and 
(- +). The inflation rule for (O+)  is O+ + 0 * * - . 

The rest of this section is devoted to a proof of this assertion. The demonstration 
proceeds by steps. 

( i )  Cutting and rescaling on the circle. Since 1 = 2 - 7 < f , at least one symbol (+) 
is met whenever a complete revolution is done on the circle (figure 3 ( a ) ) .  One thus 

Figure 3. Different steps in the renormalisation procedure for the case A = 4, I = 2 - 7, with 
the corresponding values of the rotation angle 1, and of the widths A+ and A- of regions 
(+) and (-), respectively. 
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obtains the same sequence S by cutting a sector of angle 1 out of the region (+) of 
the circle, and replacing it by a symbol (+) on the border between the new regions 
(+) and (-). The new region (+) has size 4 - 1 ,  and the whole circle has size 1 - 1 .  
Rescaling the circle to unity, the new region (+) has size (f - I ) / (  1 - I )  = 1 - ~ / 2 ,  the 
new region (-) has size r / 2 ,  and the new rotation angle is I / (  1 - I )  = T -  1 (figure 3 ( b ) ) .  
Repeating this process of cutting a sector and rescaling for region (-), one recovers 
two regions of equal size 4 and the rotation angle is equal to T.  The two sectors that 
have been cut out are replaced by a symbol (*) = (+ -) located at the left border 
between the regions (+) and (-) (see figure 3 ( c ) ) .  Thus every passage through this 
border generates a (*) = (+ -) in the sequence built by the rotation on the circle. 

( i i )  Changing the angle of rotation. Instead of taking T as rotation angle, let us 
take its fractional part 7 - 1 .  The new sequence S’ associated with this new angle 
allows us to reconstruct S in the following way: insert once the symbol (*) = (+ -) 
before every (+) or (-) (except those contained in the symbols (*) = (+ -) ccming 
from the border) (figure 3 ( d ) ) .  

( i i i )  Inflation. Let us consider the sequence S” obtained by the previous rotation 
( A  = f ,  I = T- l ) ,  forgetting the symbols (+ -) on the border (figure 3( e ) ) .  The sequence 
S’ is recovered from S” by the substitution 

0 + + 0 (*) + 
+ + + + (*) + 
+ - + + (*) - 

-++-+ 
- -+ -(* )  -. (3.10) 

These are indeed the only ways of crossing the borders. 
( i u )  Going back to S. The sequence S” may also be generated by taking the rotation 

angle 1 - ( T - 1 )  = 2 - T and exchanging the roles of regions (+) and (-) (see figure 
3( f)). One then remarks that S” is identical to ( - S ) ,  i.e. S” is the sequence of (-q) 
while S is the sequence of ( E ! ) .  

Starting from S and reversing the order of steps ( i ) - (  iu) gives the announced result 
(equations (3 .8)  and ( 3 . 9 ) ) .  Indeed, let us start from the initial word 0+, and transform 
it by the successive steps ( i u ) - (  i): 

o++o-+.o*-+o**-  = o + - + -  -. (3.11) 

We have thus obtained the beginning of the sequence S. Let us inflate this finite part 
of the sequence once more: 

:o + -  + -  - (SI 

( S ” = - S ) : O  - + - + + 
( S ‘ )  : o * -  + *  - + * +  
( S )  : o *  * - * + *  * - * + *  * + .  (3.12) 

This process shows the self-similar character of the sequence S, and proves equations 
(3 .8)  and (3 .9) .  Moreover, in the notation of the letters a, b, . . . , equations (3.11) and 
( 3 . 1 2 )  become 

O + O b c b d + . O  b c b d c b c a b c b d c b c a b c b c  (3.13) 
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(see figure 4( b ) ) .  We note that the successive sizes of the words are 1 = F,,  5 = F,, 
21 = F8, where the F, are the Fibonacci numbers defined in equation (3.5). 

3.4. Consequences of the inflation rules 

Let us now analyse the consequences of the substitution 9 given by equations (3.8) 
and (3.9). These infiation rules contain, in principle, all the desired information on 
the sequence S.  In particular, they permit us to understand the observations made in 
0 3.2. Nevertheless, instead of giving detailed and lengthy proofs of these properties, 
we will capture their gross features by noting the most important consequences of the 
inflation rules given by equations (3.8) and (3.9). 

To do so, we first introduce the matrix M associated with this transformation. By 
definition, M transforms the numbers n,, n b ,  n , ,  nd of letters a, b, c, d in any finite 
part of the sequence S into the corresponding numbers nb, nb, n:, n &  in the inflated 
sequence: 

0 0 1 1  [ ..1.[_1 M = [ 2  2 2  1 2 .  '1 
nb 1 0 1 0  

The characteristic polynomial of the matrix M is 

P ( A )  = det(AU - M )  = ( A  + 1 ) * ( A 2  -4A - 1) 

(3.14) 

(3.15) 

b b  b b  
d b a  d b o  

b b  

c c  o c  c c  c c  

i b !  

Figure 4. ( a )  Representation of the inflation rules for the case h = f ,  I = 2 - T. An ascending 
segment corresponds to E ,  = +, a descending one to E ,  = -. ( b )  Two steps of inflation 
generating the beginning of the sequence S. 
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the roots of which are A = -1, -1, - T - ~ ,  T ~ .  This implies that the action of the substitu- 
tion 9 on any large part of the sequence S corresponds asymptotically to a dilatation 
of its size by the leading eigenvalue T ~ .  One may check this result. Indeed, the 
eigenvector corresponding to the leading eigenvalue T~ is ( ~ - ~ / 2 ,  T - ~ ,  T - ~ ,  f 3 / 2 ) ,  the 
components of which are the relative frequencies of latters a, b, c and d, respectively. 
Since, by inflation, these letters give words of sizes 5 ,  3, 5 ,  5 ,  respectively (see figure 
4(a)),  any finite part of the sequence S will be dilated by the factor 

(3.16) 
The value of this scaling factor is in agreement with the increase of the sizes of words 
through inflation, noted above. Furthermore, it is also related to the observations made 
in § 3.2 on the behaviour of S (  N), , ,  and S (  N)min. 

A second feature observed in 0 3.2 was the ‘oscillating’ behaviour of S ( N )  (see 
table 1). This is related to the fact that each letter is ‘reversed’ by inflation (see figure 
4(a)),  which would not happen if step (iv) was absent (see § 4).  

A last remark is in order. We notice that in figure 4( a )  the relation - + = c + a b c b d 
plays a special role. Indeed, let us compare the successive sums of the contained 
in a letter a, b, , . . , and in the word obtained by inflation. To do so, consider figure 
4(a )  as representing mountains and valleys. For instance, the maximum height of a 
is 2 and the maximum depth of the word obtained after inflation is -2. For b, these 
numbers are 1 and -1, respectively. Similarly, the maximum depth of d is -2 and 
the maximum height of the word obtained after inflation is 2. The crucial point comes 
from the fact that for c these numbers are -1 and 2, respectively. This difference is 
at the origin of the divergence of the fluctuation considered in this paper. 

These considerations taken together thus provide a quantitative explanation of the 
logarithmic divergence of S (  N )  observed in 9 3.2. In 0 4, the study of the general case 
will complete this description. 

5 T - 3 / 2 +  3 T P 2 +  5 T - 2 +  5T-3/2 = T 3 ,  

4. Generalisation to an arbitrary rotation angle 

The purpose of this section is to show how the exact renormalisation transformation 
Y described in § 3.3 in the particular example 1 = T - ~  can be easily generalised to 
arbitrary irrational values of the rotation angle 1 <;. We define w = 21 for further 
convenience. 

4.1. On continued fraction expansions 

Since the construction which follows will make an extensive use of the continued 
fraction expansion (CFE) of the number w = 21, we must first recall some basic notation. 
Any irrational number O <  w < 1 can be written in a unique way as 

1 
1 

a ,  +- 
a 2 + .  . . 

o =  = [ a , ,  a,,  . . . 3 (4.1) 

where the integers a k  are called the quotients of the CFE. If we truncate this expansion, 
we obtain a sequence of rational approximants 
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called the principal convergents of the CFE. Their numerators and denominators both 
obey linear recursion relations: 

(4.3) 

In the following, we will also make use of the quantities 

(4.4) 

4.2. The renormalisation transformation 5 

The renormalisation procedure described in § 3.3 in the particular case 1 = f 2  can 
easily be generalised to an arbitrary rotation angle. We will now derive this transforma- 
tion 3 explicitly, following closely the set-up of § 3.3.  We consider the sequence 
{ E ,  = 2x1 , , (  n l )  - 1 = sgn s i n ( 2 d ) ) ,  where w = 21, and perform the following operations. 

Step (i). The sequence { E , , }  remains invariant if we cut out of each region (+) or 
(-) of the circle a given number of successive sectors with angle 1. It is clear from 
equation (4.1) that the maximal number of sectors we can cut out is a ,  = int(w). We 
add a symbol * = ( + a l - a l )  at the left border between the new (+) and (-) regions. 
Both now have a size f(1 - a l w ) .  If we rescale these regions to their initial size $, we 
obtain a new rotation angle which is w / 2 ( 1 -  a l w ) ,  or equivalently 1 / 2 w l ,  by virtue 
of (4.4). 

Steps (ii) and (iii). These consist in replacing the rotation angle 1 / 2 w 1  by its 
fractional part, after keeping track of a given integer number v of revolutions. Since 
equation (4.4) implies 1 / 2 w l  = f( a, + w 2 ) ,  two cases have to be considered separately, 
according to the parity of a, .  If a2 is even, then we choose v = f a 2 ,  and the remaining 
fractional part is f w r < i .  We have therefore achieved our goal: the sequence { E , ( w ) }  
is indeed related to another sequence { E , (  w ' I} through an unambiguous transformation 
5, and the renormalised rotation angle is such that w ' =  w 2 ,  where w 2  defined in (4.4) 
is closely related to the CFE of w. If a,  is odd, then we choose v = +(a,- l ) ,  and the 
remaining fractional part is f( 1 + w 2 )  7 4. We therefore need a last operation to achieve 
the renormalisation procedure. 

Step (iu). This step, which we perform if a, is odd, consists in reversing the signs 
of the E ,  and replacing the rotation angle $( 1 + 0,) by its complement 1 - f( 1 + w 2 )  = 
f( 1 - w, ) .  The renormalised angle is therefore defined by W '  = 1 - w 2 .  

Hence the main result of this section is as follows: the sequence { E , ( w ) }  is related 
to another sequence { E , ( W ' ) }  by an explicit renormalisation procedure 3 (inflation 
rules). We summarise below the definition of w ' ,  together with the inflation rules acting 
on the sequence { E , } .  We recall that w 2  is defined in (4.4), and that the star stands 
for the symbol 
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a, even a2 odd 

9 ( w )  = w ’ =  w ,  S ( w ) = w ’ = l - w ,  

v = + U 2  v = f (  a, - 1 )  

++++*”+ + + + - * ” + I  - 

+ - -3 + * ” + I -  +-+ - * ”+  
-++ - * ”+  -+ + +*”+, - 
--  + - * ” -  - - + + * ” + I + .  

These rules generalise to arbitrary values of w = 21 the main result (3.9) of § 3.3. In 
the first case (a ,  even), the renormalisation of w just amounts to a shift of the index 
k of its quotients ak by two units. In the second case (a, odd),  the <:FE of w ‘  = 1 - w ,  
has a slightly more intricate expression: 

a3= 1: o ’ = [ a , + l ,  a5, U 6 , .  . . ]  
I* I a , # l :  w ’ = [ l , a 3 - 1 ,  a‘$,a5,. . . ] .  w = [ a ,  3 a2, a3 3 . . ’ (4.7) 

The transformation Y: w + w ‘  defined in equation (4.5) maps the interval [O; 11 onto 
itself. As w varies from w = O  to w = 1, Y(w) = w ’  oscillates infinitely many times 
between 0 and 1. The function 9 is everywhere continuous, except at  the points 
w = l / N  ( N 2 2 )  and w = O .  

4.3. Self-similar sequences as jixed points of the transformation 9 

Consider a value of the rotation angle 1 for which w = 21 is a fixed point of the 
renormalisation map 9, i.e. Y(w) = w ’ =  w. Then equation (4.6) expresses the invari- 
ance of the sequence { E , }  through an  inflation procedure or, in other words, its 
self-similarity. The particular case I = T - ~  considered in 9 3 is an  example of such a 
fixed point. The purpose of the present subsection is to study analytically all the fixed 
points of the map Y. They correspond to quadratic algebraic values of w, in one-to-one 
correspondence with couples ( a , ,  a,) of positive integers. Just as in the previous 
subsection, even and odd  values of a, have to be considered separately. 

If a, is even, then the fixed point w obeys w = U , ,  i.e. a , w 2 + a , a 2 w - a 2 = 0 .  The 
positive solution is 

1 
w = -{ - a l a 2  + [ u,a2( a l a 2  + 4)]’’2}. (4.8) 

The inflation rules (4.6) of the sequence { E , }  can be rewritten as a substitution acting 
on a four-letter alphabet (see 9 3.3). The matrix form of this transformation is given 
by (using the same notation as in 9 3) 

2al 

(4.9) I M = [  U V v + l  V 

( a , - l ) v + 1  ( a , - l ) v + a ,  ( a , - 1 ) v  ( a , - 1 ) v  
v + l  v V 

( a , - l ) v  ( a , - l ) v + a ,  ( a , - l ) v  ( a , - l ) v + l  

where v = $a2.  The characteristic polynomial of the substitution is 

P ( A )  = det( A 1 - M )  = ( A  - 1)2[A2 - ( U I U ~  + 2)A + 11. (4. l o a )  
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The non-trivial zeros of P( A )  are x and x-I ,  where x > 1 is simply related to w through 

x =  a , ( a , + w ) +  1. (4. lob)  

Before discussing the implications of these results, let us first derive the analogous 
formulae which hold in the other case. 

Ifa,isodd,thenthefixedpointwobeysw = 1-w2,i.e. a , w 2 - ( a , a 2 + a , + 2 ) w + a 2 +  
1 = 0. The admissible solution (0 < w < 1) is 

1 
w = - { U , (  U,+ 1) + 2  - [a:(a,+ 1)2+4]"2}. 

2al 
(4.11) 

The matrix of the associated substitution is given by 

( a ,  - l ) ( v +  1) ( a , -  1). ( a l -  l ) v + a ,  ( a l -  l ) v + a ,  
V V+1 

v + l  v + l  V v + l  
( a ,  - l ) v + a ,  ( a ,  - 1)v ( a ,  - l ) v + a ,  ( a ,  - l ) ( v + l )  

] (4.12) M =  [ '+' 

where v = :(a2 - 1). The characteristic polynomial of the substitution is 

P(A)=det(Al-  M ) = ( A + l ) 2 [ A 2 - a , ( a 2 + l ) A  -11. (4.13 a )  

The non-trivial zeros of P ( A )  are x and ( -x- ' ) ,  where x >  1 is simply related to w 
through 

x = a,( a, + 1 - w )  + 1. (4.13 b)  

The results of $3.3 are easily recovered: I = r -2 corresponds to ( a ,  = 1, a, = 3), equations 
(4.1 1) and (4.13) yield w = 3 - J 5  = 2 ~ - ~ ,  and x = 2 + J 5  = r3 ,  as they should. The first 
eight fixed points (according to increasing values of x)  are listed in table 2 .  Some 
degeneracies can be seen: different values of a ,  and a, (and hence different self-similar 
sequences) may have the same scaling index x; we will see below that the details of 
their properties are nevertheless different. 

The scaling index x has the meaning that the action of the transformation (4.6) on 
any large but finite part of the sequence { E , }  dilates its length by a factor of x. Therefore 
any geometrical quantity that characterises the sequence { E , }  can be expected to exhibit 
in some sense periodicity in the variable In n, with period In x. I t  can be shown explicitly 
that the quantities S (  N),,, and S (  N),,,, defined in equation (3.4), indeed obey such 
a scaling behaviour. 

Table 2. Values of w = 21 and the scaling index x for the first eight fixed points of 3. The 
particular example of I 3  is the third one in the table. 

1 1 2 - s 2  = 0.585 79 1 +v/2=2.41421 
1 2 \'3 - 1 = 0.732 05 2+\ '3=3.73205 

3 -d5=0'763 93 } 2 + \ / 5  = 4,236 07 
1 
2 1 i ( 3  -& )  = 0.381 97 
1 4 2 ( ~ 2 - 1 ) = 0 . 8 2 8 4 3  
2 2 d 2 -  1 =0.41421 } 3+2d2=5 .82843  

1 5 4 - v'10 = 0.837 72 
3 1 f ( 4 - J l O )  =0.279 24 } 3 + ~ 1 0 = 6 . 1 6 2 2 8  
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Consider first the simpler case (a ,  even). I t  can be seen from equation (4.6) that 
S ( N ) , , ,  vanishes identically, since the only way a new (-) sign can show up in an 
inflation procedure is inside a star, i.e. at the right of at least one new (+) sign. 
Analogous considerations show that S(  N), , ,  is increased a ,  times by one unit in each 
inflation procedure. More precisely, let us start from the original word WO = 0+, and 
build its successive transforms W, =O*”+, W 2 = 0 * ” [ ( + * ” ) a ~ * ( - * y ) a ~ ] y + ,  etc. It can 
be shown by recursion that the length (number of signs except the initial 0) of the 
word Wk is nothing else than q,k, where the integers qk have been defined in (4.3). 
These results imply that S ( N ) , , ,  is increased a, times (by one unit) for a ,  values of 
N separated by a distance qo (the last of these values is q , ,  i.e. S(ql)max = al) ,  then 
for a, values of N separated by a distance q2 (the last of these values is q 3 ,  i.e. 
s(q31max = 2al),  and so on. Since q2k grows asymptotically as x k ,  where x is precisely 
the scaling index defined in (4.10b), these exact results concerning the points where 
S (  N) , ,x  increases yield the following asymptotic expression: 

In A; 

In x 
a, even S ( N ) , , , =  a,- S(  N),,, E 0. ( 4 . 1 4 ~ )  

In the other case (a ,  odd), analogous results can be derived. Since the points where 
S(  N), ,x  is increased, or S(  N) , , ,  is decreased, are not as simple as above, we will just 
mention their asymptotic scaling form 

a, In N 
2 I n x  

a, odd S(N),,,=-S(N),in=- -. (4.146) 

Equations (4.140) and (4.14b) generalise to all the fixed points of the map 9 the 
scaling result (3.6) which was derived in 0 3 for the particular example 1 = r-’. 

We have shown that the sums S (  N )  defined in (3.3) grow as In N for some special 
values of N, which are more and more rare ( N  - x k ) .  Let us now present some evidence 
that IS( N ) (  is also growing at a similar rate as S (  N),,, or IS( N)minl for typical values 
of N. For that purpose, we define the mean squared fluctuation Z ( N )  at scale N by 

l N  
N n = l  

a, odd Z ( N ) = -  C S ( n ) ’  ( 4 . 1 5 ~ )  

(4.1 5 b )  

We are led from numerical evidence to argue that this quantity also has a logarithmic 
asymptotic behaviour: 

(4.16) 

irrespective of the parity of a,. Both the slope C and the periodic correction P (with 
period p = 1 (a ,  even) or 2 (a ,  odd)) depend on a, and a,. Figures 5 and 6 illustrate 
the behaviour (4.16) in one example for each parity of a,. Let us remark that the 
analytical study of the constant C and the function P remain a difficult open question. 

The above analysis of the fixed points of the renormalisation map .F: w + w‘ can 
be extended to the periodic points w, such that Y k ( w )  = w for some finite integer k. 
These values of w are still quadratic algebraic numbers, in one-to-one correspondence 
with 2k-uplets of integers (a , ,  a,, . . . , a I k ) .  The main results of this section remain 
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3.5- 

2 . 8 -  

2 . 1 -  

- 
1 . 4 -  

S ( N )  

, 
l , l C l t ~ ~ 1 ~ 1 ~ ~ ~ ' ~ 1 ~ 1  

0 2.0 5.6 0.4 11.2 14.0 
Ln N 

Figure 5. Plot of the mean squared fluctuation Z( N ) ,  defined in (4.15), against In N ,  for 
w = 21 = 43 - 1 (second case in table 2). 

Figure 6. Same as figure 5, for w = 3 - 4'5, i.e. 1 = 2 -  7 (third case in table 2, which was 
considered in B 3 ) .  

qualitatively the same for fixed points and periodic points, in particular the self- 
similarity of the sequence { E , }  and the logarithmic growth of its fluctuation S (  N ) .  

4.4. Properties of some aperiodic orbits 

If we consider a 'generic' irrational value, such as the transcendental numbers e-= or 
1/.ir2, of the rotation angle 1, then the CFE of w = 21 does not present any special 
regularity. Hence the orbit of w by 9, i.e. the set of its successive iterates U ' =  9 ( w ) ,  
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U " =  .F(u'), etc, under the renormalisation map Y, defined in (4.5), is generically a 
complicated irregular aperiodic object. 

Contrary to the case of the self-similar sequences studied in 9 4.3, the sequences 
associated with aperiodic orbits are expected to have more intricate asymptotic proper- 
ties. It is therefore hopeless to attempt to describe in detail the behaviour of quantities 
such as S ( N ) , , ,  for all values of 1. The purpose of this section is to show that some 
scaling results concerning S(  N), , ,  can nevertheless be derived for some exceptional 
values of the rotation angle. In particular, we will show explicit examples for which 
S ( N ) , , ,  grows much quicker, or much slower, than a logarithm. 

We restrict ourselves in the following to values of the rotation angle such that the 
even quotients of the CFE of @(az ,  a4, a 6 , .  . . ) are all even integers. This ensures that 
step (iv) of the renormalisation procedure will never take place, and that S(  N)min 
vanishes identically. Moreover, the values of N for which S(N) , , ,  increases can be 
described in an exact fashion, along the same lines as in 9 4.3, namely, starting from 
S(O),, ,=O, we first meet a, values of N, equidistant by qo, at which S ( N ) , , ,  is 
increased by one unit, and we then meet a3 values of N, equidistant by q 2 ,  then a5 
values of N, equidistant by q4, etc. Finally all the values of N for which S ( N ) , , ,  is 
increased (by one unit) are 

N = q z / - , + K q z / :  S ( N ) m a x =  azk+l+K ( I S O ;  0 6  K 6 ~ z / + , ) .  (4.17) 

This general result yields interesting unexpected scaling laws in some specific 
examples. Consider first values of 1, such that the quotients a k  grow very quickly, e.g. 

Uk-A eXp(Sfk) (4.18) 

where A, s, t are real parameters. It can then be derived from (4.17) that S ( N ) , , ,  
grows asymptotically like 

1-1 

k=O 

(4.19) 

Since there exist values of the rotation angle which correspond to arbitrary values of 
f >  1, the exponent (1-l/f) may assume any a priori given value between 0 and 1. If 
t > 2 ,  the exponent exceeds the value 4 which characterises typical values of S(  N )  in 
a random system; there are some quasiperiodic sequences which exhibit at some 
locations a larger fluctuation than a typical random one. 

Consider now other values of 1, such that all the odd quotients (a , ,  a 3 ,  a 5 , .  . . ) 
assume the common value 1, while the even ones (az ,  a4, .  . . ) still grow like (4.18). 
Equation (4.17) now yields asymptotically 

S(N)max-N1-lIr (in N)-h A / t  In t 

(4.20) 

For such values of 1, the fluctuation grows much slower than the one of self-similar 
structures. 

5. Conclusions 

The renormalisation transform 9 described in the present paper allows a detailed 
description of the sequence generated by the circle map T, defined in § 2, for arbitrary 
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values of the rotation number 1, in the particular symmetric case A = + .  The results 
concerning the fluctuation of atomic positions assume a simple form in the following 
two instances. Fixed points of T, corresponding to some quadratic rotation numbers, 
yield self-similar sequences with a logarithmic fluctuation; for some exceptional rotation 
numbers, the fluctuation can be shown to diverge as a power of the system size, although 
the orbit of T is aperiodic. A quantitative description of the general case, where A 
has any value between 0 and 1, remains an  open question. 

Let us mention that it is possible to construct sequences of 0 and  1 generated by 
automata, which also exhibit various types of diverging fluctuation [7]. Reference [8] 
also deals with the relationship between self-similarity, quasiperiodicity and number 
theory. 

To conclude, one may guess that a rich variety of types of order with discrete 
spectrum may exist in nature. As far as the two-lengths model mentioned at the end 
of $ 2  is concerned, one may expect a more subtle spectrum. We will address this 
question in a subsequent publication [9]. A generalisation of the methods used in this 
paper to higher dimensions, e.g. quasiperiodic packings of two types of spheres, would 
also be desirable. 
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